THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2050A Extra Tutorial 2

- 1. Let f and g be uniformly continuous on $A \subseteq \mathbb{R}$. If f,g are both bounded on A, show that fg is uniformly continuous on A. Can the boundedness condition be dropped?
- 2. Prove that if f is uniformly continuous on a bounded subset A of \mathbb{R} , then f is bounded on A.
- 3. Suppose $I \subseteq \mathbb{R}$ is a closed and bounded interval, $f: I \to \mathbb{R}$ is continuous and positive on I. Show that 1/f is uniformly continuous on I. Can the conditions on I be dropped?
- 4. Let $f:[0,\infty) \to \mathbb{R}$ be a continuous function. Suppose $\lim_{x\to\infty} f(x) = l \in \mathbb{R}$. Show that f is uniformly continuous.
- 5. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be periodic on \mathbb{R} if there exists a number p > 0 such that f(x+p) = f(x) for all $x \in \mathbb{R}$. Prove that a continuous periodic function on \mathbb{R} is bounded and uniformly continuous on \mathbb{R} .